机械振动-4
zhouzhou Lv2

第四章

二阶非齐次常系数线性微分方程:

md2xdt2+cdxdt+ky=f(t)m \frac{d^2 x}{dt^2} + c \frac{dx}{dt} + ky = f(t)

  • 非齐次微分通解 y(t)\Rightarrow y(t)

  • 非齐次微分特解 y(t)\Rightarrow y_*(t)

    y=y(t)+yh(t)y = y_*(t) + y_h(t)

二阶非齐次常系数线性微分方程组 (多自由度系统):

  • 拉普拉斯变换 (瞬态振动和稳态振动)
    mLx¨(t)+cLx˙(t)+kLx(t)=LF(t)mL{\ddot{x}(t)} + cL{\dot{x}(t)} + kL{x(t)} = L{F(t)}

简谐激励下的强迫振动

振动微分方程的解:

mx¨+cx˙+kx=F0eiωtm \ddot{x} + c \dot{x} + kx = F_0 e^{i \omega t} , ω~=ωωn\tilde{\omega} = \frac{\omega}{\omega_n}

  • x1(t)=Rejωtcos(ωdtφ)x_1(t) = Re^{-j \omega t} \cos(\omega_d t - \varphi) (瞬态解)
    ξ<1\xi < 1
  • x2(t)=x0sin(ωtφ)x_2(t) = x_0 \sin (\omega t - \varphi) (稳态解)

mx¨+cx˙+kx=F0sinωtm \ddot{x} + c \dot{x} + kx = F_0 \sin \omega t

x2(t)=F0ksin(ωtφ)x_2(t) = \frac{F_0}{k} \sin(\omega t - \varphi)

相关参数:

  • 放大因子: μ=1(1ω~2)2+(2ξω~)2\mu = \frac{1}{\sqrt{(1 - \tilde{\omega}^2)^2 + (2 \xi \tilde{\omega})^2}}
  • 静变形: B=F0kB = \frac{F_0}{k}
  • 相位差: φ=arctan2ξω~1ω~2\varphi = \arctan \frac{2 \xi \tilde{\omega}}{1 - \tilde{\omega}^2}

全响应:

x(t)=Rejωtcos(ωdtφ)+F0k(1ω~2)2+(2ξω~)2sin[ωtarctan(2ξω~1ω~2)]x(t) = Re^{-j \omega t} \cos(\omega_d t - \varphi) + \frac{F_0}{k \sqrt{(1-\tilde{\omega}^2)^2 + (2\xi \tilde{\omega})^2}} \sin [\omega t - \arctan (\frac{2\xi \tilde{\omega}}{1-\tilde{\omega}^2})]

稳态响应特性

  • ω~0\tilde{\omega} \rightarrow 0: μ1\mu \rightarrow 1, φ0\varphi \rightarrow 0, x0F0kx_0 \rightarrow \frac{F_0}{k}
  • ω~1\tilde{\omega} \rightarrow 1: μ12ξ\mu \rightarrow \frac{1}{2 \xi}, φπ2\varphi \rightarrow \frac{\pi}{2}, x0F0cω=F02kξ=F0cωx_0 \rightarrow \frac{F_0}{c\omega} = \frac{F_0}{2k\xi} = \frac{F_0}{c \omega}
  • ω~\tilde{\omega} \rightarrow \infty: μ0\mu \rightarrow 0, φπ\varphi \rightarrow \pi, x0F0kω~2=F0mω2x_0 \rightarrow \frac{F_0}{k \tilde{\omega}^2} = \frac{F_0}{m \omega^2}

频率和阻尼:

  • 受迫峰值频率: ω~peak=12ξ2\tilde{\omega}_{peak} = \sqrt{1 - 2 \xi^2}
  • 对比有阻尼的频率: ωn=kJ\omega_n = \sqrt{\frac{k}{J}}

振幅:

  • 受迫振动峰值: μmax=12ξ1ξ2\mu_{max} = \frac{1}{2\xi \sqrt{1-\xi^2}}
  • 对比小阻尼 ξ\xi : μmax12ξ\mu_{max} \approx \frac{1}{2\xi}

ωpeakωdωn\omega_{peak} \leq \omega_d \leq \omega_n

其他特性:

  • 相位特性: φ=arctancωkmω2\varphi = \arctan \frac{c \omega}{k - m \omega^2}
  • Q 因子 (品质因子) Q=μmωnc=1cωn=12ξQ = \mu \frac{m \omega_n}{c} = \frac{1}{c\omega_n} = \frac{1}{2\xi}
  • E=0TF0x˙dt=πcωx02E = \int_0^T F_0 \dot{x} dt = \pi c \omega x_0^2
  • 半功率带宽: Δω=(ω2ω1)\Delta \omega = (\omega_2 - \omega_1) 共振峰值点处